Category Archives: Balistica

Maximum Point-Blank Range

Fuente del artículo en ingles: (Artículo publicado en el número de JUL15 de la revista gratuita Tactical Online)
Fuente del articulo en castellano: tirotactico.net

¿A qué distancia se colima, ajusta o pone a cero un arma?

 

muzzleloader_trajectoryEl tiro con armas de fuego, bien sea en el ámbito del tiro deportivo o en el del combate con armas de fuego, supone lanzar un proyectil o bala a través del aire para que impacte en un blanco o amenaza y lograr unos determinados efectos (mayor puntuación o incapacitación), lo cual representa el campo de estudio de la Balística. La Balística es una ciencia que estudia el mecanismo de deflagración en el cartucho que impulsa la bala, su paso a través del ánima del cañón, las características y comportamiento aerodinámicos del proyectil y el vuelo  del mismo, así como los efectos que produce al impactar en un blanco. Esta ciencia tiene un marcado carácter multidisciplinar debido a su complejidad, por lo que para su desarrollo se apoya en otras ciencias como las Matemáticas, la Física y la Química, especialmente en los campos de la termodinámica, la metalurgia, la aerodinámica, la óptica, la electrónica, etc. Cualquier usuario de un arma de fuego tiene que tener ciertos conocimientos sobre Balística, porque esta ciencia es la que nos permite conocer y comprender mejor el tiro y es la que aporta las explicaciones de conceptos tales como el MPBR y, sobre todo, una solución de tiro para alcanzar el blanco.

Por su complejidad, para su estudio la Balística se separa en tres ramas que se definen por el lugar en el que se encuentra el proyectil en cada momento. La Balística Interior (o Interna) comprende el estudio del proyectil, y todo lo que le rodea, mientras éste se encuentra dentro del cañón, desde el momento en el que se percute el cartucho y se inicia la combustión de la pólvora hasta que el proyectil abandona la boca de fuego. La Balística Exterior (o Externa) comprende el estudio del vuelo o trayectoria del proyectil, y todos los factores que le afectan, desde que abandona la boca de fuego hasta que impacta sobre el blanco. Y la Balística Terminal (o de Efectos, o de Heridas) comprende el estudio del proyectil y sus efectos cuando éste impacta sobre el blanco. Para el tema que nos ocupa las explicaciones corresponden a la Balística Exterior, puesto que se trata de un concepto ligado a la trayectoria del proyectil, que será la que determine dónde impacta el proyectil en relación con la puntería.

Uno de los principios básicos del tiro, así como uno de los pilares fundamentales del combate con armas de fuego, radica en la puntería. Sólo los impactos bien colocados en el blanco o amenaza cuentan para el éxito o victoria, lo que equivale, más o menos, a hacer coincidir el Punto de Impacto (PdI), donde impacta el proyectil, con el Punto de Puntería (PdP), donde se pretende que impacte el proyectil. Pero esa coincidencia entre PdP y PdI no se va a producir prácticamente nunca salvo casualidades, entre otras cosas porque ni en condiciones ideales se puede reproducir exactamente la misma trayectoria para dos proyectiles. Son tantos los factores que afectan a la trayectoria de un proyectil que resulta casi imposible que vayan a coincidir “exactamente” el PdI y el PdP, aunque bastará con que los impactos estén suficientemente bien colocados.

NOTA: en este artículo nos referiremos al Punto de Puntería (PdP) como el lugar donde se pretende que impacte el proyectil, que no siempre coincidirá con aquel al que realmente se apunte con los elementos de puntería del arma, como sucede cuando se corrige el tiro sin ajustar los elementos de puntería.

Precisión + Corrección = Exactitud

Esa pretendida colocación de los impactos (PdI ≈ PdP) se llama exactitud y se define por dos parámetros: precisión y corrección (Precisión + Corrección = Exactitud). Sin entrar en demasiados detalles, la precisión se define en relación inversamente proporcional al tamaño del agrupamiento de los impactos; un menor agrupamiento indica una mayor precisión. La corrección se define como la relación de cercanía entre el PdP y el PdI (o centro de impactos, si se trata de varios impactos); cuanto más próximos entre sí mayor corrección.

Aunque se mantenga fijo el PdP de cada disparo, dos disparos no serán iguales y será la separación entre los PdI la que determine la precisión. Esta precisión va a depender de factores inherentes al arma, a la munición, a las condiciones meteorológicas, etc. además de al tirador, que no podrá mantener fijo el PdP como sí sucede, más o menos, si el arma se trinca fuertemente a una plataforma sólida y estable como puede ser un banco de pruebas. En ese último caso, si se realiza una serie de múltiples disparos, se obtendrá una agrupación o rosa de impactos, a partir de los PdI de cada disparo, que quedará definida por la dispersión de los impactos o separación entre los mismos. Cuanto menor dispersión mayor precisión del arma. Normalmente la precisión se mide en forma de desvío angular medido en minutos de ángulo [Minute Of Angle (MOA)], medida que es independiente de la distancia al blanco, o en forma de dispersión medida en centímetros, medida que es dependiente de la distancia al blanco. 1 MOA equivale aproximadamente (1’047) a 1 pulgada a 100 yardas, aproximadamente 3 cm. (2’91 cm.) a 100 m., 1’5 cm. a 50 m., 0’7 cm. a 25 m., 0’3 cm. a 10 m., 6 cm. a 200 m, 9 cm. a 300 m., etc.

Precisión de 1 MOA y desvío probable

Aunque no imprescindible, para todo tirador resulta interesante conocer la precisión que cabe esperar de la combinación arma-munición de tal forma que sepa a qué atenerse y no le pida peras al olmo. En el caso de un fusil de asalto normal en calibre 5’56 OTAN con munición normal cabe esperar una precisión de 3-4 MOA, es decir, 8’7-11’6 cm. a 100 m., 17’4-23’3 cm. a 200 m. En el caso de una pistola normal en calibre 9 Luger con munición normal cabe esperar una precisión de 7-8 MOA, es decir, 2-2’3 cm. a 10 m., 5’1-5’8 cm. a 25 m., 10’2-11’6 cm. a 50 m. A esas cifras habría que añadir el detrimento de la precisión debido al tirador, lo que puede aumentar los números sustancialmente. Asimismo, cabe esperar que cada impacto se desvíe la mitad de las cifras anteriores respecto al centro de impactos de una agrupación o rosa de impactos, el cual habría de coincidir con el PdP. De esta forma, resulta perfectamente normal esperar que los impactos se desvíen respecto al PdP (desvío probable) 5 cm. a 100 m. o 10 cm. a 200 m. en el caso de un fusil de asalto normal y 1 cm. a 10 m., 2’5 cm. a 25 m., 5 cm. a 50 m. en el caso de una pistola.

En lo que respecta a la corrección, segunda parte de la exactitud del disparo, ésta depende de la puntería y de su conocimiento, de tal forma que se logre llevar el PdI lo más próximo al PdP, entendido como el lugar donde se pretende que vayan los impactos, bien introduciendo correcciones en los elementos de puntería o corrigiendo el tiro sobre la marcha alterando el punto al que apuntan los elementos de puntería. La corrección de los impactos va a depender directamente de la trayectoria del proyectil, que se define básicamente por los datos de tiro (deriva y elevación) y la velocidad inicial del proyectil. Teniendo en cuenta que la velocidad inicial del proyectil depende de la combinación arma-munición, que no se puede manipular en el momento del disparo, el tirador actuará sobre la puntería para ajustar la elevación y deriva del arma e intentar llevar el disparo al punto deseado. Para intentar predecir dónde irá el impacto es necesario conocer la trayectoria que describe un proyectil, antes de pasar a definir por fin el MPBR o alcance máximo de impacto en el blanco.

En el caso de disparar un proyectil en el espacio (en el vacío y en ausencia de gravedad) éste describiría una trayectoria rectilínea. La existencia de gravedad en la superficie de la Tierra supone que el proyectil describa una trayectoria parabólica, que será simétrica en el vacío (debido a la ausencia de rozamiento con el aire) y asimétrica en la atmósfera terrestre (debido al rozamiento con el aire que frena el avance del proyectil). El ángulo de elevación y la velocidad inicial del proyectil principalmente determinan la forma de la trayectoria, así como otros factores tales como la resistencia al avance del proyectil que viene determinada por el coeficiente balístico (cuanto más cerca de 1 o más menor resistencia al avance).

En el hipotético caso de una trayectoria parabólica simétrica, la altura máxima que alcanza el proyectil se encontraría en su punto medio (a mitad del alcance máximo) y el alcance máximo se obtendría con un ángulo de elevación de 45º. Pero en el mundo real, con atmósfera, al ser asimétrica la trayectoria esta altura máxima se encuentra aproximadamente a los dos tercios del alcance máximo, de forma que la rama ascendente de la trayectoria es más prolongada que la rama descendente, y el alcance máximo se obtendría aproximadamente con un ángulo de elevación de 50º.

Trayectoria, punto de puntería y punto de impacto

Mientras que la trayectoria del proyectil tiene la forma de una parábola asimétrica la línea de puntería es una recta que queda determinada por la alineación de los elementos de puntería. Ambas líneas, la trayectoria del proyectil y la línea de puntería, guardan una relación entre sí que determina la relación entre el PdP y el PdI y que varía con la distancia a la boca de fuego.

En el caso de un fusil o pistola la boca de fuego se encuentra por debajo de la línea de puntería, que será más o menos horizontal. En virtud del ángulo de tiro, definido por el ángulo de elevación del cañón del arma, normalmente la trayectoria del proyectil cortará la línea de puntería en dos ocasiones, en dos puntos diferentes, uno en la rama ascendente y otro en la rama descendente de la trayectoria, salvo que dicho punto coincida con la altura máxima de la trayectoria, en cuyo caso habrá un único punto de corte.

Teniendo esto en cuenta se pueden deducir varias cosas. En el momento de abandonar el cañón (a 0 m. de la boca de fuego) el PdI se encuentra por debajo del PdP. Pasada una cierta distancia se produce el primer corte entre la trayectoria y la línea de puntería (PdP = PdI). Más allá de dicho primer punto de corte el PdI sube con la distancia hasta llegar a los dos tercios de la trayectoria cuando el PdI se encontrará a la altura máxima. A partir de ahí el PdI empieza a caer con la distancia hasta que vuelve a cortar la línea de puntería (PdP = PdI). Más allá de dicha distancia el PdI continúa cayendo por debajo de la línea de puntería. A esas dos distancias a las que la trayectoria del proyectil corta la línea de puntería y, por tanto, el punto de puntería (PdP) coincide con el punto de impacto (PdI), es a las distancias a las que se colima, ajusta o pone a cero un arma (zero en inglés, supongo que porque la separación entre el PdP y el PdI es cero al coincidir ambos poco más o menos). Únicamente a esas dos distancias a las que se encuentran esos dos puntos de corte coincidirán el PdP y el PdI, que se irán separando a medida que varíe la distancia, lo que afectará irremediablemente a la corrección del tiro, salvo que se apliquen correcciones según la distancia, o bien compensando el lugar al que se apunta o bien ajustando los elementos de puntería con la distancia. En ambos casos habrá que saber la distancia a la que se está disparando así como las variaciones del PdI respecto al PdP, lo cual ni es fácil, ni es rápido, ni resulta realmente necesario si se tiene en cuenta el MPBR y se colima el arma a la distancia correspondiente.

Suponiendo que la velocidad inicial del proyectil es prácticamente constante para un mismo arma y munición, las trayectorias posibles del proyectil serán infinitas según el ángulo de elevación del arma, que determinará también el alcance máximo. Con un arma de fuego no se busca aquella trayectoria que ofrezca el máximo alcance sino aquella que ofrezca una mayor eficacia. Para evitar grandes variaciones entre el PdP y el PdI según la distancia al blanco o amenaza, y así intentar asegurar que el impacto se produce en la zona deseada sin tener que realizar ajustes sobre la marcha, se busca una trayectoria lo más plana y larga posible, es decir, que su altura máxima no exceda del límite superior de la zona de impacto deseada cuando el PdP se sitúa en el centro de dicha zona y que proporcione el mayor alcance posible antes de que el proyectil caiga por debajo del límite inferior de la zona de impacto deseada cuando el PdP se sitúa en el centro de dicha zona. Esa trayectoria se corresponderá con el MPBR o alcance máximo de impacto en el blanco, ya que mientras el PdP se mantenga en el centro de la zona de impacto deseada el PdI no estará más de una determinada distancia por arriba o por debajo del PdP.

Aunque la trayectoria correspondiente al MPBR o alcance máximo de impacto en el blanco podría calcularse experimentalmente, normalmente se calcula introduciendo los datos relativos a la munición (velocidad inicial del proyectil, coeficiente balístico, peso del proyectil, etc.), junto con el radio de la zona de impacto (que coincidirá con la altura máxima de la trayectoria), en un software balístico. Otro dato necesario para los cálculos es la altura de la línea de puntería respecto a la línea de tiro, que hará que varíen los resultados. El resultado obtenido indica el MPBR así como la variación del PdI respecto al PdP con la distancia y aquellas distancias (normalmente dos, una en la rama ascendente y otra en la rama descendente) a las que coinciden el PdI y el PdP, que serán las distancias a las que colimar el arma.

En el caso de un fusil de asalto normal en calibre 5’56 OTAN con munición normal la distancia de colimación más habitual y recomendada es la 50/200, que sin coincidir exactamente se acerca más o menos a la distancia de colimación para el MPBR. Como se aprecia en la imagen, para el fusil de asalto HK G36 con la munición SS109 (estándar OTAN), el MPBR es de 222 m. para una zona de impacto con un radio de 4 cm. (PdI ≈ -4 cm.) y la distancia de colimación exacta sería de 196 m. (PdI ≈ PdP). Con esos datos, a 50 m. de la boca de fuego el PdI se encontraría 0’1 cm. por debajo del PdP y a 200 m. 0’5 cm. por debajo, es decir, a 50 y 200 m. prácticamente coinciden el PdI y el PdP, de ahí la denominación 50/200 para esta colimación que se acerca bastante a la del MPBR. Esta distancia de colimación permite aprovechar de forma óptima y eficaz la capacidad del fusil y su munición, ya que el tirador no ha de preocuparse de la distancia al blanco y sólo ha de apuntar al centro de la zona de impactos deseada para que el PdI se encuentre no más de 4 cm. por encima o por debajo del PdP. Además, la munición SS109 pierde eficacia al perder velocidad debido a su menor fragmentación, que empieza a ser notable a partir de los 200 m.

Trayectoria del proyectil. MPBR. HK G36. 5'56 OTAN.

A decir verdad, existe una primera parte de la trayectoria en la que el proyectil se encuentra fuera de la zona de impacto, por debajo de los 4 cm. de su borde inferior, ya que en el caso del HK G36 la altura de la línea de puntería respecto a la línea de tiro (eje del cañón) es de 7 cm. De esta forma, hasta pasados aproximadamente los primeros 20 m. de la trayectoria desde la boca de fuego, el PdI se encuentra más de 4 cm. por debajo del PdP. Esto habrá de ser tenido en cuenta por el tirador en el caso de necesitar un impacto más exacto, como puede ser cuando se requiera una incapacitación inmediata de una amenaza, mediante la colocación del impacto sobre el hipotálamo. Entonces tendrá que corregir el tiro sobre la marcha apuntando más alto, aproximadamente en la línea de separación del pelo y la frente.

En el caso de una pistola normal en calibre 9 Luger con munición normal el MPBR es de poco menos de 100 m. para una zona de impacto con un radio de 7’5 cm. (PdI ≈ -7’5 cm.) y las distancias a las que el PdI coincide con el PdP es de poco más de 6-7 m. en la rama ascendente y unos 75 m. en la rama descendente de la trayectoria. Sin embargo, la distancia de colimación más habitual con pistola es de 25 m., distancia a la que el PdI se encontrará unos 5 cm. por encima del PdP. De esta forma, sobre un blanco de tiro de precisión, como puede ser el blanco NRA B-8, al apuntar a la base del círculo negro los impactos se encontrarían en la zona central correspondiente al 10. La conclusión más evidente de estos datos es que no es necesario disparar alto para batir un blanco hasta una distancia de casi 100 m. Es más, a 50 m. el PdI se encuentra a unos 7 cm. por encima del PdP, así que habría que apuntar bajo, y no alto como se podría pensar inicialmente si se considera que el proyectil empieza a caer antes de lo que realmente lo hace. Esto se puede comprobar fácilmente de forma experimental en el campo de tiro.

Por otra parte, al trasladar a la realidad los datos obtenidos con el cálculo del MPBR no sólo habrá que tener en cuenta el radio de la zona de impactos utilizado en dicho cálculo (4 cm. en el caso del fusil y 7’5 cm. en el caso de la pistola) sino también la precisión de la combinación arma-munición de la que hablábamos al principio. De esta forma, al hipotético PdI hay que añadir un posible desvío de 5 cm. a 100 m. o 10 cm. a 200 m. en el caso de un fusil de asalto y 1 cm. a 10 m., 2’5 cm. a 25 m. o 5 cm. a 50 m. en el caso de una pistola. No obstante, en el combate con armas de fuego, si se considera como la zona de impactos deseada un círculo de 20 cm. de diámetro (centro de masas de una amenaza), el PdI se encontraría dentro de dicha zona mientras el PdP se encuentre en su centro.

En conclusión, y para finalizar, la balística exterior, y más concretamente la trayectoria del proyectil, va a determinar algunas cuestiones de las que el tirador ha de ser consciente, como la relación entre el PdP y el PdI, la distancia de colimación y el MPBR.

Efectos de la LTC u BCO (Balística) PARTE 1

Efectos de la Longitud Total del Cartucho “LTC” (“COAL” Cartridge Over All Length) y Base del Cartucho a Ojiva (“CBTO – Cartridge Base To Ogive)

Muchos tiradores no son conscientes de los peligrosos efectos que el asiento de una bala profunda puede tener en la  presión y velocidad generada por un cartucho de rifle. El LTC es una variable que puede ser usada para mejorar la precisión. También se debe tener en cuenta en la munición que va a ser introducida en un cargador. En este artículo, exploraremos varios de los efectos del LTC, y que elecciones puede tomar el tirador para maximizar la efectividad de sus balas recargadas.

Armas deportivas y el Institute de fabricación de municiones (Ammunition Manufacturers’ Institute “SAAMI”) 

La mayoría de los manuales de recarga se basan en los estándares acordes al SAAMI. SAAMI ofrece las máximas presiones, LTC y muchas otras especificaciones y datos para cartuchos comerciales, de modo que los fabricantes de rifle, fabricantes de municiones, recargadores (domésticos) puedan estandarizar sus productos y que así puedan trabajar todos juntos. Como veremos más tarde en este artículo, estos estándares SAAMI están en muchos casos anticuados y pueden perjudicar seriamente el potencial y funcionamiento de un cartucho.

Imagen 1. Cuando la bala se asienta mas hacia afuera de la vaina queda mas espacio para la pólvora, esto permite a la punta conseguir mas velocidad en boca con la misma presión.

La profundidad a la que asienta la bala una variable importante en la ecuación de la precisión. En muchas casos, el SAAMI especifico que el LTC es más corto que lo que una persona que recarga (recargador) quiere en sus recargas para temas de precisión. En el caso donde un recargador asienta la bala de manera que el LTC es más largo que el especificado por el SAAMI, hay algunos efectos internos balísticos que ocurren que es importante para entender.

Los efectos de asentar en profundidad / LTC en Presión y Velocidad

El efecto primario de cargar un cartucho largo es que deja más volumen interno en el interior del cartucho. Este volumen interno extra tiene un efecto conocido; para una cantidad de pólvora cargada, habrá menos presión y menos velocidad producida al espacio suplementario vacío. Otra forma de verlo es que se tiene que usar más pólvora para alcanzar la misma presión y velocidad cuando la bala está asentada hacia afuera. De hecho, la pólvora suplementaria que pueda añadir a una bala asentada larga le permitirá alcanzar mayor velocidad con la misma presión que un cartucho asentado corto.

Cuando uno se para a pensarlo esto se vuelve más sensato. Después de todo, cuando asienta la bala larga y deja más espacio interno para pólvora, lo que está haciendo es crear un cartucho más grande incrementando el tamaño de la cámara de combustión. En la imagen 1 queda ilustrado el espacio extra disponible cuando la bala asienta larga.
Antes de sacar la conclusión de que sería una buena idea que dejaréis asentar las balas de forma más larga que la longitud de las especificaciones SAAMI, hay ciertas cosas que considerar.Geometría de la Garganta de la Recámara.

La recámara en un rifle tendrá una cierta longitud de garganta que dictará cuan larga puede asentarse una bala. La garganta es la parte avanzada de la recámara que no tiene estrías. La porción de bala que queda por fuera de la vaina ocupa la garganta. Ver imagen 2

Imagen 2. Geometría de la garganta de la recámara donde se muestra el salto de la bala a las estrías o al inicio de estrías.

La longitud de la garganta determina cuánto de la bala puede sobresalir de la vaina. Cuando un cartucho es introducido en la recámara y toca el principio del estriado, conocido como Cuello (Lads), esta se encuentra con mucha resistencia. Este LTC marca la longitud máxima a la que una bala puede ser asentada. Cuando una bala se asienta fuera para que toque las estrías, su movimiento inicial durante la ignición inmediatamente hace que se encuentre con una resistencia de grabado.


Apoyar una bala contra el inicio de la estría hace que las presiones sean considerablemente mas elevadas que si las dejamos una milésima de pulgada mas atrás que del inicio de estría.


Una práctica muy común en la recarga de precisión es establecer la LTC para que toque el inicio de las estrías,. Esto es una longitud de referencia que el recargador utiliza para buscar una profundidad de asiento óptima para la precisión. Muchas veces, la mejor profundidad para asentar la bala es tocando o muy cerca del inicio de estría. Sin embargo, en algunos rifles, la mejor forma de asentar la bala es 0.100 pulgadas o mas del inicio de estría. Esto simplemente es una variable que un recargador usa para encontrar la precisión en un rifle.


Considerar el cargador para el tamaño de las balas.


Es importante saber como vamos a utilizar la balas que recarguemos para saber si el uso de un cargador puede afectarnos, por ejemplo en caza o tiro táctico. Hay que asegurarse si la longitud del cartucho que recarguemos entra en el cargador. Medir nuestro cargador es un paso importante antes de recargar.


Los tiradores de precisión generalmente no utilizan el cargador por lo que permite mas opciones a la hora de modificar la longitud del cartucho.

Las especificaciones SAAMI COAL (Especificaciones de la LTC) limitan las opciones balísticas.

Es importante recordar que muchos rifles están desarrollados con especificaciones SAAMI y sus recamaras están diseñadas para municiones con la LTC estándar.

COMO AFECTA EL VIENTO SEGUN LA DISTANCIA

Tirador Barret

Viento. Muchas veces esta el diablo en los detalles que hace que un tirador se frustre. A menudo, el viento, es más o menos estimado por el tirador, debido a su fluidez. Mientras los métodos de medición de viento han recorrido un largo camino, sigue siendo el tirador el que toma la decisión correcta.

Esto significa, no sólo la comprensión de que el viento es más como olas en el océano con altos, bajos, y todo lo que haya en el medio. Pero también la comprensión de los asuntos donde el viento, las características geográficas y cómo pueden engañar en cómo interactuan con el viento.

Anteriormente hablamos de como afecta el viento según el tramo por el que vuela la bala (Donde afecta más el viento). Para valorar esto, el recorrido que hace la bala se divide en tres tramos. El primer tramo es el que corresponde al viento que afecta en la boca del cañón y hasta que esta empieza a ha coger altura, el segundo tramo corresponde al tramo en el que la bala vuela a mayor altura, y el tercer tramo es cuando vuelve a caer ya con menor velocidad que en los dos primeros tramos.

En el siguiente gráfico podemos ver una estimación de cuanto afecta el viento según el tramo en el que se encuentre la bala. Si nos fijamos a menos de 400 metros el viento inicial es el que mas afecta a nuestro disparo, pero no podemos descartar el viento del segundo y tercer tramo, que aunque afecta en un menor porcentaje, la proporción es muy similar. A 600 metros el viento inicial empieza a afectar menos que la suma de los vientos del segundo y tercer tramo. Pero como puedes ver no hay una gran diferencia si valoramos el viento del segundo y tercer tramo como una sola constante.

La conclusión que podemos sacar después de ver esta gráfica es la misma que sacamos en anteriores ocasiones. El tirador debe ver el viento en cada tramo y valorar si las intensidades son distintas o iguales, en caso de ser iguales podemos hacer una compensación basándonos en estos datos, pero si las velocidades y direcciones son distintas deberemos calcular con estos datos en que punto nos afectara mas.

Efecto del Viento Segun distancia

 

Influencia del viento a varias distancias

Factor de Forma (FORM FACTOR) La incognita que faltaba por entender del Coeficiente Balístico

Con lo que vais a leer espero que se entienda bien lo que es el “Form Factor” que corresponde a la incógnita i. Esto implica la calidad del proyectil, y si sabemos este dato podremos saber que bala es la mas indicada.
Para conocere el factor de forma de proyectiles del .308win y .338LM teneis el cuaderno de tiro “Tirador K” donde aparecen muchas puntas con su correspondiente factor de forma, longitudes de punta, Coeficientes Balísticos contrastados…. etc.

Para aquellos que no estén muy familiarizados con el BC G7, este es simplemente un coeficiente balístico que hace referencia al G7 de un proyectil estándar a diferencia del proyectil estándar del G1. El G7 es principalmente para las balas de larga distancia modernas, por lo que el G7 sera mas constante en las velocidades de distancias mas amplias comparado con el BC G1.

Como la Densidad Seccional (Sectional Density) y el Factor de Forma (Form Factor) comprometen al BCEn términos generales, el Coeficiente Balístico de una bala es la densidad seccional dividida por el factor de forma. La densidad seccional es fácil de calcular por que depende del calibre de la bala y su peso. Por ejemplo, la densidad seccional de una punta de 175 grain del .308 es: 175/7000(.308^2) = 0.264 (el peso de la bala se divide entre 7000 para convertirlo de grains a libras). Cualquiera con una calculadora de bolsillo puede calcular la densidad de una bala teniendo el calibre y el peso.

El factor de forma es la parte difícil por que requiere una medida del rozamiento de la bala, que esta relacionada con el perfil de la bala. En resumen, el factor de forma es el rozamiento de la bala dividido entre el rozamiento de una balas estándar. Cuando se trabaja con el BC G7, se divide el rozamiento de un proyectil en particular entre el rozamiento G7 de un proyectil estándar.

Un ejemplo (figure 2), una punta de 175 grain VLD junto a una punta G7 estándar

Si nos fijamos en los perfiles de las dos balas, sin considerar el calibre o el peso, ¿como te imaginarias el rozamiento de la Berger VLD (izquierda) comparandola con el rozamiento del estándar G7 (derecha)? Pues bien, la VLD tiene el culo de bote un poco mas corto, y una nariz mas embocada que el proyectil estardar G7, por lo que debe tener mas rozamiento. En cambio, el Factor de Forma G7 de esta VLD es 1.035. Que significa que el rozamiento de la VLD es 1.035 veces el rozamiento de G7 del proyectil estándar. (En otras palabras, 3,75% mas de rozamiento)

Para calcular el BC G7 de esta bala, simplemente divide la densidad seccional, 0.264 por el factor de forma de 1.035: .264/1.035 = .255

Una toma de contacto con el factor de forma.

En la siguiente tabla podéis ver unos ejemplos de balas con su correspondiente Factor de Forma de diferentes tipos de perfiles de rozamiento.

formfactors_chart1-179x300

La primera bala que aparece en la tabla tiene una cola de bote muy corta, y una ojiva corta con una punta bastante achatada. Esta bala tiene un factor de forma de 1.286, o un 28,6% mas de rozamiento que el estándar de G7 que se puede ver en el medio de la tabla.

La siguiente bala, la segunda, tiene una nariz mas larga (menos rozamiento), con una punta menos achatada (también menos rozamiento), pero aun tiene una cola de bote relativamente corta. Esta bala tiene una factor de forma de 1.036, o 3.6% mas rozamiento que el estándar G7.

La siguiente bala tiene una nariz larga (menos rozamiento). Fijaros que la longitud de la superficie no es importante en el factor de forma. Solo la longitud de la nariz, el perfil de la nariz, el diámetro de la punta, el ángulo del culo de bote y su longitud dictan cual sera el rozamiento de su factor de forma. Esta bala tiene un factor de forma de 1.006, lo que es solo 0.6% mas de rozamiento que el estándar de G7, esencialmente idénticas. Cuando esta punta tiene un factor de forma tan próximo a 1, tendrá el BC G7 muy próximo a su SD (Seccional Density) por que BC=SD/Factor de forma.

La siguiente es el Estandar de G7. El peso y el calibre de esta bala no es importante en el análisis del factor de forma.

Mas abajo es una bala con una nariz larga y cola de bote con un factor de forma de G7 de 0.993, una vez mas muy próximo al 1.000, pero un poco menos de rozamiento que el Estandar G7 (0.7% menos de rozamiento exactamente)

La siguiente es una bala con una nariz muy secante, una punta plana muy pequeña y una larga cola de bote. Esta bala tiene un Factor de Forma G7 de 0.933, que realmente es un rozamiento muy bajo. La ultima bala tiene una nariz muy similar a la que esta justo por encima pero tiene factor de forma de 0.923. eso es 7.7% menos de rozamiento que el estándar G7 y se considera muy bueno.

Aplicando el conocimiento del factor de forma, o: “¿que significa todo esto?”

Para todos los que hayáis leído hasta aquí. Gracias! vuestra atención sera recompensada.

Hemos hablado de que el Factor de Forma G7 es: un factor que se relaciona el rozamiento de cualquier bala con el rozamiento de un proyectil estándar G7. ¿Entonces por que es tan importante tener conciencia y comprensión del factor de forma? ¿No es esto para lo que es el BC, para hacer comparaciones entre balas con un simple numero? Es cierto que el BC es una medida util para saber el funcionamiento, pero hay un problema pero hay un problema con la utilización del BC’S solo para evaluar el funcionamiento balístico. El problema con el BC es que combina los efectos de la masa y el rozamiento en un numero. Por lo que si una bala tiene un BC alto, no podrás saber si es una bala de peso medio con un rozamiento muy bajo, o una bala muy pesada con un rozamiento muy alto. La razón de que esto es importante es porque si una bala tiene un BC alto solo por que es pesada, implicara que tenga una mala velocidad en boca y el funcionamiento de esta no sera tan buena como implica un alto BC.

Para ilustrar la importancia de esto, consideremos dos balas del calibre .30- Una de 175 grains con un perfil de rozamiento muy bajo (un Factor de Forma bajo). La otra es un bala de 190 grais con un perfil de rozamiento mas alto. Las mismas balas tienen el mismo BC, ¿que bala utilizarias para disparar, y por que?

En el ejemplo, la elección obvia es la de 175 grains por que conseguirás una velocidad en boca mayor y tendrá el mismo BC.

Las balas alcanzaran diferentes velocidades en boca dependiendo de su peso, con balas mas ligeras se conseguirán velocidades mayores que con balas pesadas. Esto hace difícil evaluar el funcionamiento balístico para las balas de pesos diferentes, solamente basados en su BC.

Sin embargo, el factor de forma es un indicador mas universal del funcionamiento potencial y la eficiencia de una bala. El factor de forma de una bala es, esencialmente, una medida de como eficiente es el vuelo de una bala, independientemente del peso de la bala.

Observando por encima la linea de las balas Berger, ejemplos de factor de forma bajos son:
– 6mm 95 grain VLD con un factor de forma de .923
– 6.5mm 140 grain VLD con un factor de forma de .918
– 7MM 180 grain Hybrid con un factor de forma de .924
– .338 300 grain Hybrid con un factor de forma de .895

En estos momentos, el factor de forma de la linea del calibre .30 de las Berger no son una buena comparación con otros calibres. El menor rozamiento de una bala del .30 solo tiene un factor de forma alrededor de .98. Mirando únicamente los BC, la debilidad del calibre .30 no es bastante evidente, pero un análisis de factor de forma muestra que el calibre puede ser obviamente excepcional.

Si alguna vez has oído a alguien el comentario de: “es un alto BC para su calibre y peso” esta simplemente diciendo que la bala tiene un rozamiento bajo, y un buen (bajo) factor de forma. Este tipo de balas son las que tienes que identificar por que son las que te darán el mejor funcionamiento, independientemente del peso y del calibre de la bala, y de que velocidad en boca (MV) puedas conseguir.

La masa de la bala básicamente retiene la velocidad en boca, lo que es una ventaja hablando en términos de funcionamiento balístico. Sin embargo, un rozamiento bajo hace que cualquier bala de cualquier peso sean mas eficientes a cualquier velocidad.

Si te preguntas como entender el factor de forma del G7 de varias balas, es bastante simple. Solamente divide la densidad seccional por el BC G7. Por ejemplo, considerando el calibre .30 y una bala de 175 grains como la usada antes en este ejemplo. Con una densidad seccional de .264, y el G7 .255. Entonces el factor de forma de G7 es .264/.255 = 1.035. De este modo, puedes calcular el factor de forma para cualquier bala si tienes el G7, y evaluar la eficacia de las balas en términos de factor de forma.

Corrientemente Berger y Lapua son las dos únicas empresas de balas que proporcionan el BC’S G7 para sus balas. Sin embargo, Bryan Litz a publicado un libro que experimentalmente ha medido el BC’S para más de 235 balas de muchas marcas, incluyendo sus factores de forma de G7. Si quieres ahorrarte algún tiempo haciendo cálculos, puedes coger el libro para ver una lista de todas las balas moderadas con sus factores de forma de G7.

Lo siguiente es una tabla que cataloga los factores de forma de G7 para todas las cola de bote de las Balas de Berger (el estándar G7 se aplican mejor a balas de cola de bote, mientras que el estándar G1 se aplica a la base plana).

Notaras que la densidad de forma y el BC’S varían para todas estas balas debido a los pesos diferentes y calibres. Es imposible saber con el BC solo si una bala es una bala buena para un calibre particular y UN peso.

Sin embargo, el factor de forma no tiene relación con el calibre y el peso, esto claramente indica el mérito del perfil de las balas, como esto se relaciona el bajo rozamiento y el funcionamiento balístico.

-El color rojo implica que el factor de forma es mayor a 1.000, el rozamiento es igual o mayor al del proyectil estándar G7.
-El color amarillo indica que el factor de forma esta entre 0.999 y 0.950, el rozamiento esta entre un 5% menos del proyectil estándar G7.
-El color verde indica que el factor de forma esta por debajo de 0.950, el rozamiento es inferior al 5% del proyectil estándar G7

Las balas con factores de forma en la categoría verde son de rozamiento sumamente bajo y bastante raras entre muchas varias marcas de balas de larga distancia. Puede ver que la línea de Berger tiene la concentración más alta ‘de verde’ en los 6.5 y 7mm calibres. Es una razón de por qué estos calibres son tan precisos en larga distancia, porque estos calibres tienen balas con el relativa mente altos BC’S para su calibre y peso; que es un efecto directo del factor de forma bajo (bajo rozamiento)

También notaras que factores de forma ‘verdes’ son totalmente ausentes, en la actualidad, del calibre .30. Esta deficiencia de balas de rozamiento bajos en calibre .30 ha sido identificada y diseños actuales en curso elevarán el funcionamiento de este calibre con diseños de factor de forma inferiores.

CONCLUSIÓN

  • El análisis de factor de forma puede ser muy útil cuando se considera el potencial de funcionamiento de las balas de larga distancia.
  • Basarse solo en el BC puede ser un dato engañoso por que incluye el calibre y el peso de la bala.
  • El factor de Forma indica cuanto rozamiento tiene la bala, que es algo muy importante a considerar para todas las balas y calibres.
  • A diferencia del BC, el conocimiento del factores de forma es universal entre todos los calibres y los pesos de balas. Un factor de forma de G7 de 0.920 es excelente para cualquier bala, sea .22 cal, 6mm, o .338.
  • El factor de Forma no depende del peso de la bala o el calibre.
  • La próxima vez que consideres el potencial de funcionamiento de una bala para disparos de larga distancia, asegúrate de preguntarte a ti mismo como es el factor de forma comparado con otras balas de su clase.

Balistica interna: ARMONICOS DEL CAÑÓN DE UN RIFLE

ARMÓNICOS DEL CAÑÓN DE UN RIFLE (Balística Interna)

Desde el momento que el gatillo es presionado y la aguja percutora golpea el pistón hasta que la bala sale de la boca del cañón, una serie de vibraciones comienzan en el rifle, y todas ellas se transmiten al cañón en varias magnitudes. Esto incluye efectos menores como cuando el disparador esta liberando la aguja percutora, como el movimiento de la aguja hacia delante, el golpeo del pistón y el cartucho moviéndose hacia delante. La pólvora se inflama y la bala comienza a moverse hacia delante se “engancha (engarza) en el cañón”. A causa del estriado del cañón, mientras la bala esta siendo empujada hacia delante, comienza a trasmitir, aunque pequeño, pero apreciable giro, pero mas importante cuando esta atravesando el cañón esta establece un modelo de vibración circular o en arco. El calor de la pólvora quemada con la ola de presión generada por la expansión de gases comienza otro modelo de vibración que se transmiten en el cañón.

Todos estos movimientos estresan el cañón y lo hacen vibrar con un numero diferente de modelos armónicos que si no son controlados harán que cada proyectil salga de la boca del cañón en un punto ligeramente diferente del arco vibracional.

Algunas personas hablan sobre el “latigazo” (whip) del cañón, que implica, simplemente, que el cañón vibre de arriba abajo como una fusta. Aunque haya vibraciones que viajan en esta dirección, las vibraciones principales son circulares. Si esto no fuera verdad, un grupo de 3 disparos siempre estaría en una linea vertical. Esto seria así por que la bala saldría en el momento que el “latigazo” esta arriba, otra en el momento que esta en el medio y otra en el momento que el “latigazo” esta abajo. Como sabemos esto raras veces ocurre, pero si esto ocurre, normalmente es causado por que el cañón se ha sometido a un gran estrés, como por ejemplo el causado por un exceso de presión contra el cañón o causado por un mal beding (encamado) por lo general del cañón.

Sten’s tuner

 

Barrel Tuner (Sintonizador de cañón)

La mayoría de grupos de 3 disparos que veréis tendrá una forma prácticamente triangular. Esto es a causa de que el rifle vibra al rededor de un “arco circular” y la bala sale, por ejemplo, a las 12 en punto, otra a las 4 en punto y la tercera a lo mejor sale a las 8 en punto. Cuanto mas grande sea el arco del cañón, menos preciso sera, y mas grande sera el triangulo.

Como regla, cuanto menos masa tenga el cañón, (cuanto mas fino) se vera mas afectado por las vibraciones, por esta razón un cañón “pesado” parece que dispara de forma mas consistente que un cañón normal y es mas fácil que se temple en temperatura. Un cañón mas corto pero con el mismo diámetro tendrá un movimiento de arco menos amplio.
Cuando sintonizas el cañón con un Accurizer o un Barrel Tuner (Sintonizador de cañón) lo que estas haciendo es cambiar la amplitud vibrational de la parte que esta “volando” al final del cañón, provocando que el arco vibrational o el circulo vibrational del cañón se haga cada vez mas pequeño y pequeño. Cuanto mas pequeño sea este circulo vibrational mas pequeño sera el grupo aunque la bala salga a las 12, 4 u 8, notaremos que el triangulo es menor.
Hasta hace pocos años, cuando dispositivos de control parar las vibraciones del cañón aparecieron en escena, la única forma de controlar esta vibraciones en el cañón que afectaban a la precisión de los rifles era la customizacion de la munición hasta conseguir una combinación de punta, piston, pólvora, y ajustes en profundidades que mejorase este armónico en ese rifle en particular mejorando los grupos.

SmartStock

Ahora, sin envargo, con el uso de SmartStock (Culata Inteligente), no es necesario para el tirador normal, el uso de munición customizada preparada para reducir este marco de precisión que antes se le atribuya la munición recargada.

Mientras usted use municiones bien hechas, ya sean recargadas o de fabricante, puedes sintonizar el armónico de su cañón con la munición que elija.

Si sirve de ejemplo, en cañón de 22 pulgadas, 7.2 libras y 3,17cm de diametro sin “flute” el angulo de salida de la bala a 100 yardas (91.44m) es de 1.5415 cm (0.6069in). Mientras que ese mismo cañón recortado a 14,6829 pulgadas quedando en un peso de 2,18kg (4,820lb) proboca un angulo un 70% menor o 3 veces menós, siendo de 0,458cm (0.1804in). Visto desde la boca del cañón veríamos un movimiento de 0.00278 inches en el cañón de 22″ y de 0.00052 en el cañón de 14,68 pulgadas.

Un cañón fluteado tiene una frecuencia natural menor (en Hz) que ese mismo cañón no fluteado. Puede llegar a triplicar el angulo de disparo. Siendo peor un cañón fluteado que un cañón liso en este tema.
Unos datos:
TIEMPO: El tiempo aproximado que tarda una bala a 1.005m/s (3300fps) en recorrer el cañón hasta salir, asumiendo que esta en constante aceleración, es de 0.0011 segundos. La velocidad del sonido en acero inoxidable 416 es de 4.267 ms (14,000fps) y la ola de estrés tiene tiempo de propagarse delante y atrás del cañón 4 o mas veces después de la ignición y mientras la bala viaja por dentro del cañón.
PERIODOS DE VIBRACIÓN: Como ejemplo, asumiendo que el modo 1 de frecuencia es de aproximadamente 100Hz tiene un periodo de vibración de 0.010 segundos. Por lo tanto el tiempo que se toma el cañón para hacer su primera oscilación ascendente es un cuarto de periodo o aproximadamente 0.0025 segundos. Este es aproximadamente el tiempo que la bala tarda en salir. El modo 2 de vibración tiene un periodo de aproximadamente 0.0002 segundos y podria estar en su decimotercera vez en lo alto de la oscilación, en el periodo 12.25 de la oscilación, o sobre los 0,0025 segundos. Estos dos modos podrían añadir y amplificar el ángulo de salida deboca del cañón cerca del pico de su oscilación ascendente, en el momento de la salida de bala. El sintonizador (tuner) podría ser ajustado para cambiar ligeramente las dos frecuencias de modo que se refuercen cada uno en el momento de la salida de bala.
OSCILACIÓN VERTICAL: Debido al peso del cañón y la gravedad el cañón tiene un angulo que tiende hacia abajo, pero en el momento del disparo los propios gases de la bala y la bala pasando por el cañón levantan la boca ya que estiran el cañón como si fuese una manguera doblada y la metieramos gas a presión esta se pondría derecha.

VELOCIDAD DE LA BALA Y EL MOMENTO PERFECTO: A veces no se trata de eliminar la oscilación sino de buscar una recarga o bala que haga que salga de nuestro cañón en el momento preciso entre pico y pico y no justo en el pico en el que la oscilación se encuentra en el máximo extremo

En este video podemos ver la importancia que se le da a un sintonizador de cañón y el motivo, donde nos enseñaran que resultado se obtiene con el uso de un Tuner

WEBS DE INTERES EN INGLES:

Armónicos de un cañón a 82Hz

COEFICIENTE BALÍSTICO CAL .50 MUNICION NM241

Muchos sois los que me habéis pedido el coeficiente balístico de esta munición, aquí os dejo los datos para cañones de 29 pulgadas y de 45 pulgadas

El G7 es de 0,370

El G1 es de 0,718

Recordar utilizar bien el modelo de G1 o G7 en vuestros programas balísticos.

SOBRE LOS DATOS QUE OS PIDEN LOS PROGRAMAS BALÍSTICOS Y SOBRE EL G1 Y G7 HACER CLIC EN LOS SIGUIENTES ENLACES
(G1 vs G7)
(Programas Balísticos)

Coeficiente BalIstico NM241

Disparar con el viento en contra

Sniper viento de cara

Ya hablamos de lo que pasa cuando se dispara con el viento de cola.

El rozamiento de una bala esta determinado por la velocidad de la bala RELATIVA AL AIRE a través del cual viaja. Cuando el aire se mueve, el rozamiento de la bala es diferente de lo que es cuando el aire está quieto. Es precisamente esta diferencia de la fuerza de rozamiento la que hace que la trayectoria de la bala en el viento sea diferente de lo que es con aire en calma.

El viento de cola es uno de los vientos más complicados de controlar en lo que al tiro de precisión se refiere. Es cierto que para el tiro táctico el viento de cola no es un viento preocupante por que la variación en el impacto vertical. ademas de pequeña, al tratarse de blancos verticales tenemos mucho mas margen de impacto.

Esto es bastante fácil de ver cuando la bala vuela en dirección del viento o en contra de la dirección del viento (sin viento cruzado)

Si esta disparando con el viento en contra de 10 mph (16 kmh o 5 ms) la velocidad de la bala, al salir del cañón a una velocidad respecto al suelo de 3000 fps (915 ms) la velocidad respecto al aire sera de 3014,67 fps (920 ms). Dado que la velocidad relativa es mayor que lo que seria con el aire en reposo, el rozamiento es mayor cuando la bala abandona la boca del cañón. A medida que la bala atraviesa el viento en contra, el rozamiento es mayor de lo que seria con el aire en calma a lo largo de su trayectoria. En consecuencia, la bala alcanza el blanco mas tarde (el tiempo de vuelo aumenta) y llega con menos velocidad al blanco y por tanto la bala cae más (impacta mas abajo)

Leer la entrada sobre: que pasa cuando se dispara con el viento de cola haciendo clic aqui.

Como afecta el viento de cola en el tiro

binomio sniper

El rozamiento de una bala esta determinado por la velocidad de la bala RELATIVA AL AIRE a través del cual viaja. Cuando el aire se mueve, el rozamiento de la bala es diferente de lo que es cuando el aire está quieto. Es precisamente esta diferencia de la fuerza de rozamiento la que hace que la trayectoria de la bala en el viento sea diferente de lo que es con aire en calma.

El viento de cola es uno de los vientos más complicados de controlar en lo que al tiro de precisión se refiere. Es cierto que para el tiro táctico el viento de cola no es un viento preocupante por que la variación en el impacto vertical. ademas de pequeña, al tratarse de blancos verticales tenemos mucho mas margen de impacto.

Esto es bastante fácil de ver cuando la bala vuela en dirección del viento o en contra de la dirección del viento (sin viento cruzado)

Supongamos que disparamos una bala a una velocidad de 3000 fps o 915ms y un viento de cola de 10 mph o 16kmh. Cuando la bala sale del cañón, la bala lleva una velocidad relativa respecto al suelo de 3000 fps (914ms). El viento que viene de nuestra espalda y sopla hacia el blanco lleva una velocidad de 14,67fps (10 mph o 5ms). Luego, en el instante que la bala sale del cañón, su velocidad relativa al aire en movimiento es de 2985,33 fps (910ms). Si no soplara viento, la velocidad relativa respecto al viento todavía seria 3000 fps (915ms). Dado que la velocidad relativa es menor, el rozamiento es un poco menor cuando la bala sale del cañón. A medida que la bala viaja con el viento de cola, el rozamiento es menor que si volara sin viento a lo largo de su trayectoria. Con menos rozamiento la bala alcanza el objetivo antes (El tiempo de vuelo disminuye), mantiene mas velocidad cuanto alcanza el blanco y sufre menos caída (impacta un poco mas alto)

Pero como decimos para un tiro preciso hay que tenerlo en cuenta.

A una distancia de 900 metros un error en la apreciación del viento de cola de +/- 3 kmh se traduce en +/- 1 cm

Formula aceleración y fuerza ejercida en una bala mientras viaja en el cañón.

Balística Interna

¿Como calcular la aceleración de una bala y fuerza ejercida en una bala mientras viaja en el cañón?

Pues aunque puede sonar a algo complicado es bien sencillo.

Para calcular la aceleración utilizaremos la siguiente formula:

Vf^2 = Vi^2 + 2ad
La traducción de esa formula es:
Velocidad final (Vf) al cuadrado = Velocidad Inicial (Vi) al cuadrado + 2 por Aceleración (a) por distancia recorrida (d)
Por ejemplo: Si la velocidad en boca de nuestro cañón de 66 cm o 0.66m (26″) es de 800 m/s con una punta de 170grais (11 gramos)
800^2 = 0^2 + 2a(.66)  —-> 640.000 =  1.32 a —-> a = 484.848 m/s^2
Una vez sabemos que la bala acelera en el cañón 484.848 ms2 podemos sacar la fuerza requerida con la formula:
F = ma (Fuerza = Masa por Aceleración)
F = 0.011 * 484.848 ms2 —-> F = 5333 N

TABLA DE ENERGIA DE RETROCESO SEGUN CALIBRE

En la siguiente tabla podeis ver una serie de calibres junto al peso de la bala (Pb) y Velocidad en pies por segundo (V.fps) Los retrocesos han sido tomados con los correspondientes rifles en su calibre y con algunas diferencias de peso de estos entre calibres (peso en libras)
Las dos ultimas columnas son las que nos interesan, que nos muestran la Energia y la Velodcidad, especialmente la de la Energia de Retroceso (E.Retroceso).

A mayor numero mas culatazo nos pegara el rifle y mas incomodo sera tirar con ese calibre.Por cada acción hay una reacción igual y opuesta, es una de las leyes físicas de nuestro universo. Esto significa que el impulso de la reacción de un rifle igualará exactamente el impulso de los gases de la bala y la pólvora eyectadas desde el cañon. En los deportes de tiro es lo que llamamos reacción de retroceso o “patada” o “culatazo”. Puede medirse o calcularse empíricamente y ha sido expuesto en esta tabla retroceso.No hay que olvidar que el peso del rifle es un factor crucial en la ecuación de retroceso, inversamente proporcional a la reculada. Aumentar el peso del arma por, digamos, el 25% y el retroceso se cae en un 25%. En el mundo real, las armas de fuego con la recámara para calibres menos potentes suelen ser fabricados más ligero que las armas de fuego con la recámara para calibres más potentes. Violar este principio, por ejemplo, un rifle ligero para un calibre Magnum de gran alcance como el .300 WSM y el resultado será un aumento dramático en la patada. El hecho de que se puede hacer, no significa que tenga sentido.

Elija un peso rifle adecuado para las cargas que desee disparar.

Sin embargo, el retroceso percibido, lo que siente el tirador, es una cuestión muy subjetiva. Además del factor del peso, que está influenciado por muchos factores. Uno de los más importantes es el ajuste y la forma de la culata del rifle. Una buena cantonera puede ayudar a suavizar el golpe en el hombro del tirador. Acciones semiautomáticas con gas reducen aparente de retroceso mediante la difusión de este durante un período de tiempo más largo (por la acción del movimiento automatico del cerrojo). Este tipo de cosas no se pueden explicar en una tabla de retroceso.

También, por favor entiendan que hay docenas de cargas para cualquier peso de bala, en cualquier calibre que va a producir la misma velocidad, pero una cantidad diferente de retroceso. Así lo que figura en cualquier tabla de retroceso debe tomarse como aproximados. No obstante, la siguiente tabla deberá dar una comparación razonablemente precisa del retroceso de la mayoría de los calibres del rifle populares.

Vale la pena recordar que la mayoría de las autoridades coinciden en que el retroceso de más de veinte libras/pie hará que la mayoría de los tiradores desarrollan un estremecimiento, que es ruinoso para la colocación de bala (el componente principal de la muerte de potencia). Quince libras pie es probablemente el máximo de energía de retroceso que la mayoría de los tiradores se sienten razonablemente cómodos, sobre todo en el campo de tiro, donde se busca la puntería mas precisa.

Si bien la energía de retroceso determina la dureza que se siente del golpe en el hombro, la velocidad de retroceso determina la forma en la que se siente el golpe en el hombro. Mi impresión subjetiva es que, con una acción bien diseñada, la velocidad de retroceso por encima de aproximadamente 10 fps comienza a sentirse como un fuerte golpe en el hombro en lugar de un impulso repentino.

Estimo que quince libras pie de energía de retroceso libre y 10 fps de velocidad de retroceso representan el límite superior aproximado del nivel de comodidad. Por encima de ese retroceso se vuelve cada vez más intrusivo. Además, los efectos de retroceso son acumulativos. Cuanto más se dispara, más molesta la patada del fusil, y más probabilidades hay de estremecerse. Estas son cosas buenas para recordar cuando se comparan los calibres de fusil, y el alcance.

En la siguiente tabla el peso del rifle se da en libras, energía de retroceso libre se da en libras pie, y la velocidad de retroceso libre se da en pies por segundo. Todos los valores de retroceso se han redondeado a un decimal.

Las cifras de la energía de retroceso y la velocidad de retroceso se han tomado de varias fuentes, incluyendo el nomograma de retroceso en el Handloader’s Digest 8th Edition,, varias calculadoras de retroceso en línea, el Remington shoot! programa o calculado a partir de la fórmula indicada en el  Lyman Reloading Handbook, 43rd Edition.
 
Para una versión ampliada de esta tabla con más cargas, incluyendo británicos, europeos, wildcat, calibres americanos y de propiedad obsoletos, consulte la “Expanded Rifle Recoil table” en el apartado de tablas, gráficos y listas de página

Munición (Pb@V.fps) Peso Rifle E. Retroceso V.Retroceso
.17 HMR (17 at 2550) 7.5 0.2 n/a
.17 Rem. (25 at 4000) 8.5 1.6 3.5
.204 Ruger (33 at 4225) 8.5 2.6 4.4
.218 Bee (45 at 2800) 8.5 1.3 3.1
.219 Wasp (55 at 3300) 8.5 3.2 4.9
.219 Zipper (55 at 3400) 8.5 3.4 5.1
.22 LR (40 at 1165) 4.0 0.2 n/a
.22 WMR (40 at 1910) 6.75 0.4 n/a
.22 Hornet (45 at 2800) 7.5 1.3 3.3
.22 PPC (52 at 3300) 8.5 3.0 4.8
.221 Fireball (50 at 3000) 8.5 1.8 3.7
.222 Rem. (50 at 3200) 7.5 3.0 5.1
.223 Rem. (45 at 3500) 8.5 2.6 4.5
.223 Rem. (55 at 3200) 8.0 3.2 5.1
.223 Rem. (62 at 3025) 7.0 3.9 6.0
.225 Win. (55 at 3700) 8.5 4.4 5.7
.224 Wby. Mag. (55 at 3700) 10.0 3.6 4.8
.22-250 Rem. (55 at 3600) 8.5 4.7 6.0
.22-250 Rem. (60 at 3500) 12.5 3.1 4.0
.220 Swift (50 at 3900) 10.5 3.7 4.8
.220 Swift (55 at 3800) 8.5 5.3 6.4
.223 WSSM (55 at 3850) 7.5 6.4 7.4
.224 TTH (80 at 3550) 7.5 10.2 9.4
5.6×50 Mag. (60 at 3300) 7.5 4.0 5.9
5.6x52R (70 at 2800) 7.5 3.7 5.7
5.6×57 RWS (60 at 3800) 7.5 6.9 7.7
6mm PPC (85 at 2800) 7.5 5.3 n/a
6mm BR Rem. (80 at 3100) 8.5 5.2 6.3
6mm-223 (75 at 2950) 7.5 4.6 n/a
6mm Norma BR (95 at 2914) 8.5 5.9 6.7
6mm Lee Navy (112 at 2650) 8.5 6.5 7.0
.243 Win. (75 at 3400) 8.5 7.2 7.4
.243 Win. (95 at 3100) 7.25 11.0 9.9
.243 Win. (100 at 2960) 7.5 8.8 8.7
6mm Rem. (100 at 3100) 8.0 10.0 9.0
.243 WSSM (100 at 3100) 7.5 10.1 9.3
6mm-284 (105 at 3000) 7.5 10.9 9.7
6mm-06 (105 at 3000) 8.0 10.2 9.1
.240 Wby. Mag. (100 at 3406) 8.0 17.9 n/a
.25-20 Win. (86 at 1460) 6.5 1.3 3.5
.256 Win. Mag. (75 at 2400) 7.5 2.4 4.5
.25-35 Win. (117 at 2230) 6.5 7.0 8.3
.250 Savage (100 at 2900) 7.5 7.8 8.2
.257 Roberts (100 at 3000) 7.5 9.3 8.9
.257 Roberts (120 at 2800) 8.0 10.7 9.3
.257 Rob. Imp. (115 at 2900) 8.0 10.8 9.3
.25 WSSM (120 at 2990) 7.25 13.8 11.1
.25-06 Rem. (100 at 3230) 8.0 11.0 9.4
.25-06 Rem. (120 at 3000) 8.0 12.5 10.0
.257 Wby. Mag. (100 at 3602) 9.25 15.8 10.5
.257 Wby. Mag. (115 at 3433) 9.25 17.7 11.1
.257 Wby. Mag. (120 at 3300) 9.25 15.1 10.3
6.5mm Grendel (120 at 2600) 7.5 8.9 8.8
6.5×50 Arisaka (140 at 2600) 8.0 10.0 n/a
6.5×52 M-C (140 at 2200) 8.0 7.8 n/a
6.5×54 M-S (140 at 2400) 7.5 11.1 9.7
6.5×55 Swede (129 at 2700) 8.0 12.5 10.0
6.5×55 Swede (140 at 2650) 9.0 10.6 8.7
.260 Rem. (120 at 2860) 7.5 13.0 10.6
.260 Rem. (140 at 2750) 8.25 11.9 9.7
6.5×57 (140 at 2700) 8.0 12.5 10.0
6.5mm-284 Norma (140 at 2920) 8.0 14.7 10.9
6.5mm Rem. Mag. (120 at 3100) 8.0 13.1 10.3
6.5mm Rem. Mag. (140 at 2900) 8.5 13.9 10.3
6.5×68 S (140 at 2990) 8.5 16.8 11.3
.264 Win. Mag. (140 at 3200) 8.5 19.2 12.1
6.8mm Rem. SPC (115 at 2625) 7.5 8.0 8.3
.270 Win. (130 at 3140) 8.0 16.5 n/a
.270 Win. (140 at 3000) 8.0 17.1 11.7
.270 Win. (150 at 2900) 8.0 17.0 11.7
.270 WSM (130 at 3275) 8.0 18.7 12.3
.270 WSM (150 at 3000) 8.0 18.9 12.3
.270 Wby. Mag. (130 at 3375) 9.0 21.0 12.3
.270 Wby. Mag. (150 at 3000) 9.25 17.8 11.1
7-30 Waters (120 at 2700) 7.0 10.0 9.6
7×57 Mauser (139 at 2700) 8.75 11.7 9.3
7×57 Mauser (145 at 2725) 8.5 13.0 9.9
7×57 Mauser (160 at 2600) 8.0 14.3 n/a
7×57 Mauser (175 at 2500) 8.0 15.5 11.2
7mm-08 Rem. (120 at 3000) 7.5 12.1 10.2
7mm-08 Rem. (140 at 2860) 8.0 12.6 10.1
.284 Win (150 at 2860) 7.5 17.4 n/a
7×64 (154 at 2850) 8.0 17.9 n/a
7x65R (175 at 2600) 8.0 17.1 11.7
.280 Rem. (140 at 3000) 8.0 17.2 11.8
.280 Rem. (150 at 2900) 8.0 17.4 11.8
.280 Rem. (160 at 2800) 8.0 17.0 11.7
7×61 S&H Mag. (154 at 3000) 8.5 18.4 11.8
7mm Rem. SAUM (160 at 2931) 8.0 21.5 13.2
7mm WSM (140 at 3200) 8.0 20.7 12.9
7mm WSM (160 at 3000) 8.0 21.9 13.3
7mm Rem. Mag. (139 at 3100) 9.0 19.3 11.8
7mm Rem. Mag. (150 at 3100) 8.5 19.2 12.1
7mm Rem. Mag. (160 at 2950) 9.0 20.3 12.0
7mm Rem. Mag. (175 at 2870) 9.0 21.7 12.5
.275 H&H Mag. (160 at 3050) 8.5 19.5 12.2
7mm Wby. Mag. (140 at 3300) 9.25 19.5 11.7
7mm Wby. Mag. (160 at 3200) 9.0 25.6 13.5
7mm STW (160 at 3185) 8.5 27.9 14.6
7mm Ultra Mag. (140 at 3425) 8.5 25.3 n/a
7mm Ultra Mag. (160 at 3200) 8.5 29.4 n/a
.30 Carbine (110 at 1990) 7.0 3.5 5.7
.30 Rem. (170 at 2120) 7.5 9.8 9.2
.30-30 Win. (150 at 2400) 7.5 10.6 9.5
.30-30 Win. (160 at 2400) 7.5 12.7 10.5
.30-30 Win. (170 at 2200) 7.5 11.0 9.7
.30-40 Krag (180 at 2430) 8.0 16.6 n/a
.300 Sav. (150 at 2630) 7.5 14.8 n/a
.307 Win. (150 at 2600) 7.5 13.7 10.9
.308 Marlin Express (160 at 2660) 8.0 13.4 10.4
7.5×55 Swiss (150 at 2800) 9.0 12.9 9.6
.308 Win. (150 at 2800) 7.5 15.8 11.7
.308 Win. (165 at 2700) 7.5 18.1 12.5
.308 Win. (180 at 2610) 8.0 17.5 11.9
.30-06 Spfd. (150 at 2910) 8.0 17.6 11.9
.30-06 Spfd. (165 at 2900) 8.0 20.1 12.7
.30-06 Spfd. (180 at 2700) 8.0 20.3 12.8
.300 Rem. SAUM (180 at 2960) 8.25 23.5 13.6
.300 WSM (150 at 3300) 8.25 22.5 13.3
.300 WSM (180 at 2970) 7.25 27.1 15.5
.300 WSM (180 at 2970) 8.25 23.8 13.6
.308 Norma Mag. (180 at 3000) 8.5 25.9 14.0
.300 Win. Mag. (150 at 3320) 8.5 23.5 13.3
.300 Win. Mag. (165 at 3110) 8.0 26.2 14.5
.300 Win. Mag. (180 at 2960) 8.5 25.9 14.0
.300 H&H Mag. (180 at 2920) 8.5 23.1 13.2
.300 Dakota (180 at 3100) 8.5 28.3 14.7
.300 Wby. Mag. (150 at 3400) 9.25 24.6 13.1
.300 Wby. Mag. (180 at 3240) 9.0 31.6 15.0
.300 Ultra Mag. (180 at 3230) 8.5 32.8 15.8
.30-378 Wby. Mag. (180 at 3300) 9.75 42.6 16.8
7.62×39 Soviet (125 at 2350) 7.0 6.9 8.0
.303 Savage (170 at 2170) 7.5 10.3 9.4
7.65×53 Mauser (180 at 2500) 8.0 15.4 n/a
7.62x53R Finn (150 at 2800) 9.0 13.1 9.7
7.62x54R Russian (150 at 2800) 9.0 13.1 9.7
7.62x54R Russian (174 at 2600) 9.0 15.0 10.4
.303 British (150 at 2700) 7.5 14.2 11.0
.303 British (180 at 2420) 8.0 15.4 11.1
7.7×58 Jap (150 at 2700) 9.0 11.9 9.2
.32-20 Win. (100 at 1984) 6.5 3.3 n/a
.32 Spec. (170 at 2250) 7.0 12.2 10.6
8×56 M-S (170 at 2260) 8.0 12.4 10.0
8×57 Mauser (170 at 2400) 8.0 13.6 10.4
8x57JS Mauser (150 at 2900) 8.0 17.1 11.7
8x57JS Mauser (195 at 2500) 8.0 18.5 12.2
.325 WSM (180 at 3060) 7.5 33.1 16.9
.325 WSM (220 at 2840) 7.5 37.5 17.9
8x68S (150 at 3300) 8.5 25.3 13.9
8x68S (200 at 2950) 9.0 29.1 14.4
8mm Rem. Mag. (200 at 2900) 8.5 32.9 15.8
.33 Win. (200 at 2100) 8.0 13.9 10.6
.338-57 O’Connor (200 at 2400) 8.0 19.2 12.4
.338 Marlin Express (200 at 2400) 8.0 16.2 11.4
.338 Marlin Express (200 at 2600) 8.0 22.0 14.0
.338 Federal (200 at 2600) 7.0 22.2 14.3
.338 Federal (210 at 2630) 8.0 21.9 13.3
.338-06 A-Square (200 at 2800) 8.0 23.9 13.9
.338-06 A-Square (250 at 2500) 8.5 28.2 14.6
.338 Win. Mag. (200 at 2950) 8.5 32.8 15.8
.338 Win. Mag. (225 at 2780) 8.5 35.2 16.3
.338 Win. Mag. (250 at 2700) 9.0 33.1 15.4
.330 Dakota (250 at 2878) 8.5 40.5 17.6
.340 Wby. Mag. (200 at 3100) 10.0 29.6 13.8
.340 Wby. Mag. (250 at 2941) 9.0 43.4 17.6
.338 Ultra Mag (250 at 2860) 8.5 43.1 n/a
.338 Lapua Mag. (225 at 3000) 9.5 37.2 15.9
.338-378 Wby. Mag. (250 at 3040) 11.75 41.1 15.0
.348 Win. (200 at 2510) 8.0 23.7 n/a
.357 Mag. (158 at 1650) 7.0 4.7 6.6
.35 Rem. (200 at 2050) 7.5 13.5 10.8
.356 Win. (200 at 2400) 7.5 17.5 n/a
.358 Win. (200 at 2490) 8.0 20.9 13.0
.358 Win. (250 at 2260) 7.66 23.0 13.9
.35 Whelen (200 at 2675) 8.0 22.6 13.5
.35 Whelen (225 at 2525) 8.0 25.0 14.2
.35 Whelen (250 at 2400) 7.5 27.9 15.5
.350 Rem. Mag. (200 at 2700) 8.5 22.3 13.0
.350 Rem. Mag. (225 at 2550) 8.5 24.2 13.5
.350 Rem. Mag. (250 at 2500) 8.5 29.0 14.8
.358 Norma Mag. (250 at 2723) 9.0 31.2 15.0
9.3×57 (232 at 2330) 8.5 19.8 12.2
9.3×62 (250 at 2450) 8.5 25.7 14.0
9.3×62 (270 at 2550) 8.5 33.3 n/a
9.3×62 (286 at 2360) 9.0 28.0 14.1
9.3×64 (286 at 2650) 9.0 36.5 16.2
9.3x74R (250 at 2550) 9.0 29.1 14.4
9.3x74R (286 at 2400) 8.25 34.3 16.6
.370 Sako Mag. (286 at 2550) 8.5 35.2 16.3
.375 Win. (220 at 2200) 7.5 17.1 12.1
.375 Ruger (270 at 2840) 9.0 41.3 17.2
.375 H&H Mag. (235 at 2700) 9.0 29.5 14.5
.375 H&H Mag. (270 at 2690) 9.0 36.1 16.1
.375 H&H Mag. (300 at 2530) 9.0 37.3 16.3
.375 Dakota (300 at 2600) 8.5 44.5 18.4
.375 Wby. Mag. (300 at 2700) 10.0 47.3 17.5
.375 Ultra Mag (300 at 2800) 8.75 53.2 n/a
.376 Steyr (270 at 2580) 8.0 39.0 n/a
.378 Wby. Mag. (300 at 2900) 10.25 71.1 n/a
.38-40 Win. (180 at 1100) 7.5 3.1 5.2
.38-55 Win. (220 at 1650) 7.5 10.1 9.3
.38-55 Win. (255 at 1415) 7.0 9.5 n/a
.450/.400-3″ (400 at 2150) 9.0 51.0 n/a
.404 Jeffery (400 at 2170) 10.25 41.0 16.1
.405 Win. (300 at 2200) 8.0 30.6 15.7
.416 Taylor (400 at 2350) 10.0 47.8 17.5
.416 Rem. Mag. (400 at 2400) 10.0 52.9 18.5
.416 Rigby (400 at 2400) 10.0 58.1 19.3
.416 Dakota (400 at 2500) 10.0 59.2 19.5
.416 Wby. Mag. (400 at 2700) 10.25 83.0 22.8
.44-40 Win. (200 at 1200) 7.0 3.4 n/a
.44 Rem. Mag. (240 at 1760) 7.5 11.2 9.8
.44 Rem. Mag. (275 at 1580) 7.5 11.4 9.9
.444 Marlin (240 at 2400) 7.5 23.3 14.2
.444 Marlin (265 at 2200) 8.5 22.1 12.9
.45 Colt (255 at 1100) 8.0 4.0 5.6
.45 Colt +P (250 at 1500) 6.5 11.1 10.5
.45-70 (300 at 1800) 7.0 23.9 14.8
.45-70 (350 at 1900) 7.0 37.9 18.7
.45-70 (405 at 1330) 7.5 18.7 12.7
.450 Marlin (350 at 2000) 7.0 37.2 18.5
.450 Marlin (350 at 2100) 8.5 33.6 16.0
.45-120 Sharps (405 at 1850) 9.0 33.9 n/a
.450 N.E. (465 at 2150) 11.0 55.5 18.0
.458 Win. Mag. (400 at 2050) 9.0 41.7 17.3
.458 Win. Mag. (500 at 2100) 9.0 62.3 21.1
.458 Lott (500 at 2300) 10.0 70.4 21.3
.460 Wby. Mag. (500 at 2600) 11.25 99.6 n/a
.500/.465 N.E. (480 at 2150) 11.0 60.7 n/a
.470 N.E. (500 at 2150) 11.0 69.3 20.1
.470 Mbogo (500 at 2509) 11.0 83.5 22.1
.480 Ruger (325 at 1450) 6.25 16.4 13.0
.500 N.E. (570 at 2150) 12.0 74.5 n/a
.50 BMG (647 at 2710) 30.0 70.0 12.3
.577 N.E. (750 at 2050) 12.0 127.5 n/a
.600 N.E. (900 at 1950) 12.0 154.0 28.8

Dispara Preciso - Dispara Lejos

Una frase simple que pretende transmitir la esencia de conseguir un disparo lo más preciso posible, con todo los conocimientos que son necesarios para lograrlo, ya que disparar puede hacerlo cualquiera, pero hacerlo preciso te convertirá en un tirador experto. Una vez consigas disparar preciso, entonces podrás disparar lejos.